Abstract
The oral cavity harbors a diverse population of microorganisms, making it one of the most heavily colonized sites in the human body. Maintaining a balanced microecology is crucial for oral health. Ligilactobacillus salivarius as a species of Ligilactobacillus, has good oral colonization ability and potential to improve oral microecology for disease prevention and control. Currently, the application and mechanism of Ligilactobacillus salivarius in oral diseases include several aspects. First, by directly inhibiting the growth of Streptococcus mutans and downregulating the expression of its cariogenic virulence factor, gtfs, the aim is to reduce the number of adherent Streptococcus mutans on the tooth surface, thereby preventing dental caries. Second, reducing the number of keystone taxa in periodontitis, and the virulence factors of Aggregatibacter actinomycetemcomitans, including CdtB and LtxA, can alleviate local stimulation in patients with periodontitis. Additionally, directly inhibiting macrophage MAPK and NF-κB pathway activation suppresses osteoclastogenesis and reduces periodontal bone absorption. In mucosal inflammation, Ligilactobacillus salivarius competes with Candida albicans, inhibits the formation of pathogenic hyphae or germ tubes, and prevents monilial stomatitis. Ligilactobacillus salivarius can also reduce the amount of Staphylococcus aureus and mitigate the activation of the macrophage TLR/PI3K/Akt/mTOR and TLR/PI3K/Akt/IκB/NF-κB pathways induced by S. aureus infections, thus alleviating inflammation in the oral and pharyngeal regions. In vitro studies on oral tumors have revealed that Ligilactobacillus salivarius can downregulate the expression of cancer cell Akt/Cyclin D1, induce direct apoptosis of tumor cells, reduce COX-2 expression, and improve the tumor immune-suppressive microenvironment. Previous studies have revealed considerable variability in Ligilactobacillus salivarius, necessitating more detailed research to clarify its clinical effects, safety, and mechanisms. Despite the emergence of novel microbiological research techniques, their application to Ligilactobacillus salivarius remains relatively limited. One crucial direction for future research is to better utilize these methods to investigate the effects of Ligilactobacillus salivarius on oral diseases. Considering these factors, this study provides a comprehensive review of existing research studies on Ligilactobacillus salivarius in the fields of oral medicine and dentistry, with the aim to serve as a reference and guide for future studies.
References
[1]
Amiri Khosroshahi R, Zeraattalab-Motlagh S, Sarsangi P, et al. Effect of probiotic supplementation on chemotherapy- and radiotherapy-related diarrhoea in patients with cancer: an umbrella review of systematic reviews and meta-analyses[J]. Br J Nutr, 2023, 130(10): 1754-1765. doi: 10.1017/S0007114523000910.
[2]
Field D, Fernandez de Ullivarri M, Ross RP, et al. After a century of nisin research-where are we now?[J]. FEMS Microbiol Rev, 2023, 47(3): fuad023. doi: 10.1093/femsre/fuad023.
[3]
Zou H, Wang H, Zhang Z, et al. Immune regulation by fermented milk products: the role of the proteolytic system of lactic acid bacteria in the release of immunomodulatory peptides[J]. Crit Rev Food Sci Nutr, 2023: 1-19. doi: 10.1080/10408398.2023.2225200.
[4]
Aprea G, Del Matto I, Tucci P, et al. In vivo functional properties of dairy bacteria[J]. Microorganisms, 2023, 11(7): 1787. doi: 10.3390/microorganisms11071787.
[5]
Krüger W, Vielreicher S, Kapitan M, et al. Fungal-bacterial interactions in health and disease[J]. Pathogens, 2019, 8(2): 70. doi: 10.3390/pathogens8020070.
[6]
Sionek B, Szydłowska A, Zielińska D, et al. Beneficial bacteria isolated from food in relation to the next generation of probiotics[J]. Microorganisms, 2023, 11(7): 1714. doi: 10.3390/microorganisms11071714.
[7]
Abdul Hakim BN, Xuan NJ, Oslan SNH. A comprehensive review of bioactive compounds from lactic acid bacteria: potential functions as functional food in dietetics and the food industry[J]. Foods, 2023, 12(15): 2850. doi: 10.3390/foods12152850.
[8]
Icer MA, Özbay S, Ağagündüz D, et al. The impacts of acidophilic lactic acid bacteria on food and human health: a review of the current knowledge[J]. Foods, 2023, 12(15): 2965. doi: 10.3390/foods12152965.
[9]
Yang Y, Song X, Xiong Z, et al. Complete genome sequence of Lactobacillus salivarius AR809, a probiotic strain with oropharyngeal tract resistance and adhesion to the oral epithelial cells[J]. Curr Microbiol, 2022, 79(9): 280. doi: 10.1007/s00284-022-02963w.
[10]
Guerrero Sanchez M, Passot S, Campoy S, et al. Ligilactobacillus salivarius functionalities, applications, and manufacturing challenges[J]. Appl Microbiol Biotechnol, 2022, 106(1): 57-80. doi: 10.1007/s00253-021-11694-0.
[11]
Zheng J, Wittouck S, Salvetti E, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel Genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae[J]. Int J Syst Evol Microbiol, 2020, 70(4): 2782-2858. doi: 10.1099/ijsem.0.004107.
[12]
Jastaniah SDS, Hafsan H, Tseng CJ, et al. Effects of dietary pectin and Lactobacillus salivarius ATCC 11741 on growth performance, immunocompetence, gut microbiota, antioxidant capacity, and disease resistance in narrow-clawed crayfish, postantacus leptodactylus[J]. Aquac Nutr. 2022, 2022: 1861761. doi: 10.1155/2022/1861761.
[13]
Pino A, Bartolo E, Caggia C, et al. Detection of vaginal lactobacilli as probiotic candidates[J]. Sci Rep, 2019, 9(1): 3355. doi: 10.1038/s41598-019-40304-3.
[14]
Fernández L, Castro I, Arroyo R, et al. Application of Ligilactobacillus salivarius CECT5713 to achieve term pregnancies in women with repetitive abortion or infertility of unknown origin by microbiological and immunological modulation of the vaginal ecosystem[J]. Nutrients, 2021, 13(1): 162. doi: 10.3390/nu13010162.
[15]
Jia GC, Che N, Xia YJ, et al. Adhesion to pharyngeal epithelium and modulation of immune response: Lactobacillus salivarius AR809, a potential probiotic strain isolated from the human oral cavity[J]. J Dairy Sci, 2019, 102(8): 6738-6749. doi: 10.3168/jds.2018-16117.
[16]
Canut-Delgado N, Giovannoni ML, Chimenos-Küstner E. Are probiotics a possible treatment of periodontitis? Probiotics against periodontal disease: a systematic review[J]. Br Dent J, 2021. doi: 10.1038/s41415-021-3624-5.
[17]
Darbandi A, Asadi A, Mahdizade Ari M, et al. Bacteriocins: properties and potential use as antimicrobials[J]. J Clin Lab Anal, 2022, 36(1): e24093. doi: 10.1002/jcla.24093.
[18]
Yao M, Lu Y, Zhang T, et al. Improved functionality of Ligilactobacillus salivarius Li01 in alleviating colonic inflammation by layerby-layer microencapsulation[J]. NPJ Biofilms Microbiomes, 2021, 7(1): 58. doi: 10.1038/s41522-021-00228-1.
[19]
Fei Y, Zhang S, Han S, et al. The role of dihydroresveratrol in enhancing the synergistic effect of Ligilactobacillus salivarius Li01 and resveratrol in ameliorating colitis in mice[J]. Research (Wash D C), 2022, 2022: 9863845. doi: 10.34133/2022/9863845.
[20]
Saïz P, Taveira N, Alves R. Probiotics in oral health and disease: a systematic review[J]. Applied Sciences, 2021, 11(17): 8070. doi: 10.3390/app11178070.
[21]
Willis JR, Gabaldón T. The human oral microbiome in health and disease: from sequences to ecosystems[J]. Microorganisms, 2020, 8(2): 308. doi: 10.3390/microorganisms8020308.
[22]
Homayouni Rad A, Pourjafar H, Mirzakhani E. A comprehensive review of the application of probiotics and postbiotics in oral health[J]. Front Cell Infect Microbiol, 2023, 13: 1120995. doi: 10.3389/fcimb.2023.1120995.
[23]
Guo M, Wu J, Hung W, et al. Lactobacillus paracasei ET-22 suppresses dental caries by regulating microbiota of dental plaques and inhibiting biofilm formation[J]. Nutrients, 2023, 15(15): 3316. doi: 10.3390/nu15153316.
[24]
Abikshyeet P, Mishra P, Bhuyan L, et al. Probiotics: dawn of a new era in dental caries management[J]. J Pharm Bioallied Sci, 2022, 14(suppl 1): S34-S38. doi: 10.4103/jpbs.jpbs_801_21.
[25]
Sabahi S, Homayouni Rad A, Aghebati-Maleki L, et al. Postbiotics as the new frontier in food and pharmaceutical research[J]. Crit Rev Food Sci Nutr, 2023, 63(26): 8375-8402. doi: 10.1080/10408398.2022.2056727.
[26]
Colautti A, Orecchia E, Comi G, et al. Lactobacilli, a weapon to counteract pathogens through the inhibition of their virulence factors[J]. J Bacteriol, 2022, 204(11): e0027222. doi: 10.1128/jb.00272-22.
[27]
Nishihara T, Suzuki N, Yoneda M, et al. Effects of Lactobacillus salivarius-containing tablets on caries risk factors: a randomized open-label clinical trial[J]. BMC Oral Health, 2014, 14: 110. doi: 10.1186/1472-6831-14-110.
[28]
Jung JI, Baek SM, Nguyen TH, et al. Effects of probiotic culture supernatant on cariogenic biofilm formation and RANKL-induced osteoclastogenesis in RAW 264.7 macrophages[J]. Molecules, 2021, 26(3): 733. doi: 10.3390/molecules26030733.
[29]
Staszczyk M, Jamka-Kasprzyk M, Kościelniak D, et al. Effect of a short-term intervention with Lactobacillus salivarius probiotic on early childhood caries-an open label randomized controlled trial[J]. Int J Environ Res Public Health. 2022, 19(19): 12447. doi: 10.3390/ijerph191912447.
[30]
Chaves BD, Brashears MM, Nightingale KK. Applications and safety considerations of Lactobacillus salivarius as a probiotic in animal and human health[J]. J Appl Microbiol, 2017, 123(1): 1828. doi: 10.1111/jam.13438.
[31]
Lin CW, Chen YT, Ho HH, et al. Impact of the food grade heat-killed probiotic and postbiotic oral lozenges in oral hygiene[J]. Aging (Albany NY), 2022, 14(5): 2221-2238. doi: 10.18632/aging.203923.
[32]
Kumbargere Nagraj S, Eachempati P, Uma E, et al. Interventions for managing halitosis[J]. Cochrane Database Syst Rev, 2019, 12 (12): CD012213. doi: 10.1002/14651858.CD012213.
[33]
Suzuki N, Yoneda M, Tanabe K, et al. Lactobacillus salivarius WB21-containing tablets for the treatment of oral malodor: a double-blind, randomized, placebo-controlled crossover trial[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2014, 117(4): 462-470. doi: 10.1016/j.oooo.2013.12.400.
[34]
Suzuki N, Tanabe K, Takeshita T, et al. Effects of oil drops containing Lactobacillus salivarius WB21 on periodontal health and oral microbiota producing volatile sulfur compounds[J]. J Breath Res, 2012, 6(1): 017106. doi: 10.1088/1752-7155/6/1/017106.
[35]
Mayanagi G, Kimura M, Nakaya S, et al. Probiotic effects of orally administered Lactobacillus salivarius WB21-containing tablets on periodontopathic bacteria: a double-blinded, placebo-controlled, randomized clinical trial[J]. J Clin Periodontol, 2009, 36(6): 506513. doi: 10.1111/j.1600-051x.2009.01392.x.
[36]
Shimauchi H, Mayanagi G, Nakaya S, et al. Improvement of periodontal condition by probiotics with Lactobacillus salivarius WB21: a randomized, double-blind, placebo-controlled study[J]. J Clin Periodontol, 2008, 35(10): 897-905. doi: 10.1111/j.1600-051X.2008.01306.x.
[37]
Kijima S, Suzuki N, Hanioka T, et al. Application of Lactobaillus salivarius WB21 to the oral care of healthy older adults: a randomized, double-blind, placebo-controlled crossover comparative study[J]. Life (Basel), 2022, 12(9): 1422. doi: 10.3390/life12091422.
[38]
Kucia M, Wietrak E, Szymczak M, et al. Effect of Ligilactobacillus salivarius and other natural components against anaerobic periodontal bacteria[J]. Molecules, 2020, 25(19): 4519. doi: 10.3390/molecules25194519.
[39]
NĘdzi-GÓra M, WrÓblewska M, GÓrska R. The effect of Lactobacillus salivarius SGL03 on clinical and microbiological parameters in periodontal patients[J]. Pol J Microbiol, 2020, 69(4): 441-451. doi: 10.33073/pjm-2020-047.
[40]
Higuchi T, Suzuki N, Nakaya S, et al. Effects of Lactobacillus salivarius WB21 combined with green tea catechins on dental caries, periodontitis, and oral malodor[J]. Arch Oral Biol, 2019, 98: 243-247. doi: 10.1016/j.archoralbio.2018.11.027.
[41]
Nissen L, Sgorbati B, Biavati B, et al. Lactobacillus salivarius and L. gasseri down-regulate Aggregatibacter actinomycetemcomitans exotoxins expression[J]. Ann Microbiol, 2014, 64(2): 611-617. doi: 10.1007/s13213-013-0694-x.
[42]
Ishikawa KH, Bueno MR, Kawamoto D, et al. Lactobacilli postbiotics reduce biofilm formation and alter transcription of virulence genes of Aggregatibacter actinomycetemcomitans[J]. Mol Oral Microbiol, 2021, 36(1): 92-102. doi: 10.1111/omi.12330.
[43]
Ausenda F, Barbera E, Cotti E, et al. Clinical, microbiological and immunological short, medium and long-term effects of different strains of probiotics as an adjunct to non-surgical periodontal therapy in patients with periodontitis. Systematic review with metaanalysis[J]. Jpn Dent Sci Rev, 2023, 59: 62-103. doi: 10.1016/j.jdsr.2023.02.001.
[44]
Özener HÖ, Kuru L, Kadir T, et al. Bifidobacterium animalis subsp. lactis as adjunct to non-surgical periodontal treatment in periodontitis: a randomized controlled clinical trial[J]. Clin Oral Investig, 2023, 27(5): 1965-1972. doi: 10.1007/s00784-023-04870-1.
[45]
Patel M. Oral cavity and Candida albicans: colonisation to the development of infection[J]. Pathogens, 2022, 11(3): 335. doi: 10.3390/pathogens11030335.
[46]
Kang CH, Han SH, Kim Y, et al. In vitro probiotic properties of Lactobacillus salivarius MG242 isolated from human vagina[J]. Probiotics Antimicrob Proteins, 2018, 10(2): 343-349. doi: 10.1007/s12602-017-9323-5.
[47]
Krzyściak W, Kościelniak D, Papież M, et al. Effect of a Lactobacillus salivarius probiotic on a double-species Streptococcus mutans and Candida albicans caries biofilm[J]. Nutrients, 2017, 9 (11): 1242. doi: 10.3390/nu9111242.
[48]
Lee YR, Bang WY, Baek KR, et al. Safety evaluation by phenotypic and genomic characterization of four Lactobacilli strains with probiotic properties[J]. Microorganisms, 2022, 10(11): 2218. doi: 10.3390/microorganisms10112218.
[49]
Jia G, Liu X, Che N, et al. Human-origin Lactobacillus salivarius AR809 protects against immunosuppression in S. aureus-induced pharyngitis via Akt-mediated NF-κB and autophagy signaling pathways[J]. Food Funct, 2020, 11(1): 270-284. doi: 10.1039/c9fo02476j.
[50]
Wan Mohd Kamaluddin WNF, Rismayuddin NAR, Ismail AF, et al. Probiotic inhibits oral carcinogenesis: a systematic review and meta-analysis[J]. Arch Oral Biol, 2020, 118: 104855. doi: 10.1016/j.archoralbio.2020.104855.
[51]
Lu K, Dong S, Wu X, et al. Probiotics in cancer[J]. Front Oncol, 2021, 11: 638148. doi: 10.3389/fonc.2021.638148.
[52]
Shang F, Jiang X, Wang H, et al. The inhibitory effects of probiotics on colon cancer cells: in vitro and in vivo studies[J]. J Gastrointest Oncol, 2020, 11(6): 1224-1232. doi: 10.21037/jgo-20-573.
[53]
Dong Y, Zhu J, Zhang M, et al. Probiotic Lactobacillus salivarius Ren prevent dimethylhydrazine-induced colorectal cancer through protein kinase B inhibition[J]. Appl Microbiol Biotechnol, 2020, 104(17): 7377-7389. doi: 10.1007/s00253-020-10775-w.
[54]
Chen JF, Ou-Yang MC, Hsia KC, et al. A three-arm, randomized, double-blind, placebo-controlled study to evaluate the safety of Lactobacillus salivarius AP-32 and Bifidobacterium animalis CP-9 used individually in healthy infants[J]. Nutrients, 2023, 15(15): 3426. doi: 10.3390/nu15153426.
[55]
Fenster K, Freeburg B, Hollard C, et al. The production and delivery of probiotics: a review of a practical approach[J]. Microorganisms, 2019, 7(3): 83. doi: 10.3390/microorganisms7030083.
[56]
Cunningham M, Vinderola G, Charalampopoulos D, et al. Applying probiotics and prebiotics in new delivery formats-is the clinical evidence transferable?[J]. Trends Food Sci Technol, 2021, 112: 495-506. doi: 10.1016/j.tifs.2021.04.009.
[57]
Salminen S, Collado MC, Endo A, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(9): 649-667. doi: 10.1038/s41575-021-00440-6.
[58]
Thorakkattu P, Khanashyam AC, Shah K, et al. Postbiotics: current trends in food and pharmaceutical industry[J]. Foods, 2022, 11(19): 3094. doi: 10.3390/foods11193094.
[59]
Butera A, Pascadopoli M, Pellegrini M, et al. Domiciliary use of chlorhexidine vs. postbiotic gels in patients with peri-implant mucositis: a split-mouth randomized clinical trial[J]. Applied Sciences, 2022, 12(6): 2800. doi: 10.3390/app12062800.
[60]
Butera A, Gallo S, Pascadopoli M, et al. Home oral care of periodontal patients using antimicrobial gel with postbiotics, lactoferrin, and Aloe barbadensis leaf juice powder vs. conventional chlorhexidine gel: a split-mouth randomized clinical trial[J]. Antibiotics (Basel), 2022, 11(1): 118. doi: 10.3390/antibiotics11010118.
[61]
Chen YT, Hsieh PS, Ho HH, et al. Antibacterial activity of viable and heat-killed probiotic strains against oral pathogens[J]. Lett Appl Microbiol, 2020, 70(4): 310-317. doi: 10.1111/lam.13275.